Harnessing the power

Browse pages
Current page

1

Current page

2

Current page

3

Current page

4

Current page

5

Current page

6

Current page

7

Current page

8

Current page

9

Current page

10

Current page

11

Current page

12

Current page

13

Current page

14

Current page

15

Current page

16

Current page

17

Current page

18

Current page

19

Current page

20

Current page

21

Current page

22

Current page

23

Current page

24

Current page

25

Current page

26

Current page

27

Current page

28

Current page

29

Current page

30

Current page

31

Current page

32

Current page

33

Current page

34

Current page

35

Current page

36

Current page

37

Current page

38

Current page

39

Current page

40

Current page

41

Current page

42

Current page

43

Current page

44

Current page

45

Current page

46

Current page

47

Current page

48

Current page

49

Current page

50

Current page

51

Current page

52

Current page

53

Current page

54

Current page

55

Current page

56

Current page

57

Current page

58

Current page

59

Current page

60

Current page

61

Current page

62

Current page

63

Current page

64

Current page

65

Current page

66

Current page

67

Current page

68

Current page

69

Current page

70

Current page

71

Current page

72

Current page

73

Current page

74

Current page

75

Current page

76

Current page

77

Current page

78

Current page

79

Current page

80

Current page

81

Current page

82

Current page

83

Current page

84

Current page

85

Current page

86

Current page

87

Current page

88

Current page

89

Current page

90

Current page

91

Current page

92

Current page

93

Current page

94

Current page

95

Current page

96

Current page

97

Current page

98

Current page

99

Current page

100

Current page

101

Current page

102

Current page

103

Current page

104

Current page

105

Current page

106

Current page

107

Current page

108

Current page

109

Current page

110

Current page

111

Current page

112

Current page

113

Current page

114

Current page

115

Current page

116

Current page

117

Current page

118

Current page

119

Current page

120

Current page

121

Current page

122

Current page

123

Current page

124

Current page

125

Current page

126

Current page

127

Current page

128

Current page

129

Current page

130

Current page

131

Current page

132

Current page

133

Current page

134

Current page

135

Current page

136

Current page

137

Current page

138

Current page

139

Current page

140

Current page

141

Current page

142

Current page

143

Current page

144

Current page

145

Current page

146

Current page

147

Current page

148

Formula One demands the ability to adapt quickly to ever-changing circumstances, and Gordon Murray had few peers in this art he describes to Keith Howard how he designed a Brabham to cope with huge power outputs – and develop it into a championship-winner

It was a particularly loony time, says Gordon Murray, a comment which encapsulates two quite disparate emotions: a fond recollection of his part in it, tempered by a clear understanding that it was a path leading nowhere.

Both 1981, the development year for the BMW M12/13 turbo engine, and 1982, its first season on the attack, were difficult ones for Brabham and BMW, Murray and Paul Rosche. Nobody doubted the potential of the engine, but its fragility strained relations almost to breaking point. Without reliability, the engine could never be a race-winner, nor could it be developed to extract more power. Straight out of the box, it produced more grunt than the Cosworth DFV, but it was heavier and lacked the normally-aspirated engine’s immediate throttle response. Consequently the M12/13 in the BT50 was no quicker than the Cosworth-powered BT49C/D — a situation that persisted until the reliability problem was cracked, and BMW could concentrate on extracting more oomph. For Murray, designing a car to carry a turbo unit brought a whole basket of unfamiliar problems. The first was the intense heat. “You’ve got a lot more cooling to do. You’ve still got to cope with the normal heat rejection from the water. You’ve got a little more heat rejection from the oil. The big problem is the turbo itself

“Paul [Rosche] was adamant the single turbo route was the right way to go, and we started using a KKK truck unit. The packaging problems around having this eight-kilogramme lump of metal running at 1000 deg C in the middle of the car — next to the engine, next to the fuel system — plus the extra heat rejection from the intercooler, were enormous. Radiated heat was easy enough to deal with: you began sticking heat shields on anything the turbo could ‘see’. But the heat soak problem was another matter. The heat would leak from the turbo to whatever it had a path to. The first thing that suffered was the bearing between the turbo and the compressor — all the tolerances just went right out the window. “So one of the first things we had to develop was some form of turbo cooling system. When we began experimenting with pitstops, the car was stationary for about 15 seconds and the turbo seized every time. Because we had air jacks, we took a tiny bleed off the air line and built our own air ejector — a venturi into which you introduce a small amount of high velocity air which then drags up to nine times the volume of air through it. This blew air across the bearing housing.

“There were dozens of heat management problems like that, some of them an issue when the car was stopped, others when the car was running.”

Paul Rosche had promised massive increases in power once the engine’s reliability issues were sorted. This and the banning of skirts for 1983 heavily influenced Murray’s design approach when penning what was to be the first championship-winning F1 turbo car, the BT52.

“We’d never have won the ’83 championship with a complicated, fragile car that drivers wanted to fiddle with because we’d not have had the time to solve the engine problems. The BT52 was the least adjustable racing car in modem Fl history, I think. Apart from the fact we had to design and build it in three months because skirts were banned after we already had the BT51 ready, I deliberately kept it simple. It was almost a bloody-minded statement: we’re going to have a hell of a year sorting the engine integration, so I am not going to make the car fully adjustable.

“You could adjust the ride height, damping and only the flap on the front wing; it had a fixed front anti-roll bar, no rear anti-roll bar and you couldn’t adjust the rear wing. Because we were losing 60 to 70 per cent of our downforce with the skirts gone, I realised we wouldn’t want to take any oft so it was maximum all the time. I made a conscious effort to get as much traction as possible. I thought: I’m going to move seven per cent more weight on to the back axle, which is the most! could get, and run the fixed rear wing. The B version had little winglets on the side to generate even more downforce.

“I said to Bernie [Ecclestone], ‘We’ll get to the first race and everybody will have done this, put all the weight on the back’. But no one had. I just couldn’t believe it. That’s why the BT52 said goodnight to all the rest at Rio. “People were just slow to understand the ramifications of losing so much downforce. As we’d generated more and more sidepod downforce with sliding skirts, the centre of pressure had moved further and further forward. You had to keep the centre of gravity in line with the centre of pressure, so every year you’d struggle to move more weight forward. We had 19-inch-wide rear tyres and only 500bhp or so from the DFV so, except off the line and in hairpins, traction wasn’t an issue. We ended up with only 53 per cent of the weight on the back axle of the 49D but we were generating over two tonnes of downforce. Losing two-thirds of that, and gaining all that power, required a complete rethink.”

So did the transmission. “With any turbo racing engine, but particularly one with a single turbo, you can’t afford to lose turbine inertia you’ve got to keep it spinning. We went to a six-speed box and later a seven-speed. The six-speed box was to keep the engine on the boil; the seven-speed box was a reaction to the increasing power differences between qualifying and race engines, so that we didn’t have to keep changing ratios between practice, qualifying and the race. “The other massive problem as the power escalated was mechanical failure. Long before the engine reached its limit we had driveshafts twisting through 360 degrees and CV joints being destroyed. Putting twice the torque through the gearbox meant we trashed them. So we needed stronger gears, stronger shafts, stronger CVs. We then stopped breaking things, but once we had over 1000bhp, we ran a gearbox just once and that was it. After qualifying with a gearbox, you didn’t rebuilt it, you threw it away. Everything had stretched and stayed stretched.” And as the difference between race and qualifying power widened, the team also had to rethink attempts to alter the car’s set-up in response.

“We gave up in the end. Even today you could not design a chassis to cope with the difference in power between qualifying and the race. Nelson said, ‘You’re wasting your time anyway. I don’t drive the car in qualifying. I come out of the corner, wait until the car is absolutely straight, get it back to the middle of the circuit and then floor it. That’s all I do. I leave myself plenty of room to brake for the next corner and just go around it in the middle of the road. You can’t drive the car, you just aim it.” So was this Formula One, or drag racing in disguise ? Whatever your view, the boost pressurelimiting valve would very soon put an end to it.

You may also like

Related products